IXTEX News

Issue 42, November 2025 — DRAFT version for upcoming release (WTEX release 2025-11-01)

Contents
Introduction

News from the Tagged PDF project
Expanding the \DocumentMetadata command .
Checking the compatibility with the Tagging

support code
Requiring or testing for the Tagging support

code
Moving paragraph tagging into sockets
Hooks for \includegraphics keys
Symbolic structure names
Normalizing key names for block environments
Contexts in typesetting
MathML intent attributes
Correctly handle tagging of math in tabular cells

New or improved commands
Support separate font families for script fonts .
Programming support for font metafamilies

Recovering the argument specifier for
document commands

Code improvements
Ensure that commands without arguments are
not \long
Avoid strange warnings about font substitutions
Improved handling of infinite shrinkage errors .
Allow multiple family names in
\ProcessKeyOptions
Control of value expansion in keys
Support word exclusion in case changing
Automatic insertion of \par tokens
Improved access to Generic Hooks

Bug fixes
Support active characters correctly with
\DeclareRobustCommand
Avoid a “Corrupted NFSS tables” error

Changes to packages in the tools category
Updating the status of some components
Update to handling page marks in longtable . .

IATEX News, and the INTEX software, are brought to you by the IATEX Project Team; Copyright 2025 — DRAFT version for upcoming release, license LPPL.

o W W NN NN N

N

ot

S Ot Ot Ot Ot

Introduction

Fans of Douglas Adams will know that this must be a
special issue of the INTEX news; unfortunately it doesn’t
give us the answer to “Answer to the Ultimate Question
of Life, the Universe, and Everything” yet—we still
expect a few more issues to reach that point.

However, with this release we have made further
progress in the generating tagged and accessible PDF
documents from IXTEX and to indicate this we move
away from calling it a prototype solution as by now it is
and can be used in production workflows (as long as one
restricts the documents to already supported packages).
This does not mean that latex-lab code (where the
tagging support currently resides) is no longer under
development, but that the user-facing side of the project
is by now fairly stable and usable.

Outside of the tagging project we have added new
functionality to the font selection support as well as code
improvements and additional functionality in a number
of other places, for example, supporting value expansion
of key values at the time of declaration, which is useful
when specifying template instances and in similar places.

As usual, there have been a few bugs to take care of
(odd ones for sure this time) and we also decided to
finally retire a few packages from the tools collection.
More exactly, we suggest that they should no longer be
used as there are better possibilities available by now.

News from the Tagged PDF project

Expanding the \DocumentMetadata command

In 2022 we introduced the \DocumentMetadata with

a twofold purpose: to provide a dedicated place for
document wide settings and metadata, and to act as a
trigger command to identify documents that want to
load new code. The latter allows the use of the new,
extended interfaces essential for the Tagging Project but
also useful without tagging.

Initially, using \DocumentMetadata with an empty
argument loaded only the PDF management code and
a new hyperref driver was used. Since November 2024
\DocumentMetadata changes the default encoding from
OT1 to T1; and since June 2025 it also changes the
default PDF version from 1.7 to 2.0.

Additional code in latex-lab (needed, e.g., for the
tagging project) had to be loaded explicitly by using
the testphase or the new tagging key in the argument
of \DocumentMetadata. Whilst this allowed for the

selective loading and testing of the new code, it also
produced problems for classes and packages adapting
their code for the tagging project since it was difficult to
test which parts of the latex-lab code were active.

In this release we therefore extend
\DocumentMetadata even further: it will now load
directly all the code that one would get when using the
tagging=off or the testphase=latest key.

The values phase-I, phase-II, phase-III of the
testphase key will no longer load different code variants
but only activate tagging. Extra modules not yet
incorporated in the latest set of modules can still be
loaded by using the testphase key.

For documents that want to load the PDF management
but do not want the new tagging support code we provide
a dedicated package. Such documents should replace

\DocumentMetadata{pdfversion=1.7,
pdfstandard=a-3b}

by
\RequirePackage{pdfmanagement}

\SetKeys [document/metadatal {pdfversion=1.7,
pdfstandard=a-3b}

Checking the compatibility with the Tagging support code
We maintain a database showing the compatibility of
classes and packages with the Tagging support code.
This data can be viewed online [7]. We have now
exported a part of the data into a small package latex-
tagging-status and added a key check-tagging-status
to \DocumentMetadata. When used, the status of the
packages and the class used by the document will be
shown at the end of the log-file.

This is only a rough overview and a debugging aid,
not a final report! Using packages that are classified as
incompatible or partially incompatible does not mean
that the tagging is necessarily broken. For example,
hyperref is partially incompatible as the form fields
are not properly tagged (this requires the use of the
[3pdffield package), but in documents without form fields
it is unproblematic. In case of partially-compatible or
incompatible packages the full table should be checked
as it often contains an explanation what is not yet
working.

The package latex-tagging-status will be regularly
updated to reflect changes in packages and the status
database. Erroneous messages should be reported at the
github of the Tagging Project[8]. It is also possible to
create a pull request to update or correct the data.

Requiring or testing for the Tagging support code

Classes or packages that are written only for the new
code loaded by \DocumentMetadata can use the new
command \NeedsDocumentMetadata at the start of the
class or package file. It will produce a suitable error
message if the tagging support code has not been loaded.

Classes and packages that want to sup-
port both legacy documents and newer docu-
ments using \DocumentMetadata can now use
\IfDocumentMetadataTF to test whether the new
code has been loaded — eventually in combination with
a test of the date of the format. To test whether
the PDF management has been loaded, the test
\IfPDFManagementActiveTF is provided.

Moving paragraph tagging into sockets

Paragraphs in EXTEX can be nested, e.g., you can have
a paragraph containing a display quote, which in turn
consists of more than one (sub)paragraph, followed by
some more text which all belongs to the same outer
paragraph.

To model such “semantic paragraphs” IMTEX uses
a structure named text-unit! and uses text (role
mapped to P) only for (portions of) the actual paragraph
text.

This is semantically clear and allows processors who
care to identify the complete paragraphs by looking for
text-unit tags. But we got a request for an option to
disable the tagging of the “semantic paragraphs”, so
with this release we moved the relevant tagging code
into sockets. The “semantic paragraphs” can now be
disabled by assigning the noop plug to these sockets:

\AssignTaggingSocketPlug{para/semantic/begin}
{noop?}

\AssignTaggingSocketPlug{para/semantic/end}
{noop}

Hooks for \includegraphics keys

The three key definitions alt, actualtext and artifact
used by \includegraphics contain now hooks, named
Gin/alt, Gin/actualtext, and Gin/artifact?. The
first two are hooks with two arguments and get as first
argument the purified (with \text_purify:n) value of
the key which is also used in the PDF and as second
argument the raw value. The hooks are processed even
if tagging is not activated. With them it is, for example,
possible to store the alternative text:

\AddToHookWithArguments{Gin/alt}
{\gdef\myalttext{#2}}

\includegraphics[alt=Hello World]
{example-image}

The alt text of the graphic was \myalttext.

Symbolic structure names

The names of structure elements tags may be taken from
the standard PDF namespaces like Sect, H1 or Figure
but they can also use alternative names provided the

IThe name is under review and is likely to change in future.
2Gin refers to the family name used by keys in the graphicx
package

latter are role mapped to a standard name. The second
approach is useful for three reasons:

o It looks nicer, if, e.g., a bible uses tag names such
as Testament, Chapter or Book instead of Sect.

e It is possible to formulate additional constraints on
such structures in a schema and thus ensure that
there is no Testament inside a Book, something
that cannot be done if Sect is used everywhere.

e We can provide a uniform LaTeX set of names for
tags.

Currently it is difficult for document authors to
change tag names as the tagging support code uses
either a fixed name or some ad hoc internal variable.
We therefore added three commands that offer an
interface to declare, use and reassign symbolic structure
names. \NewStructureName takes one argument and
declares a symbolic structure name. The expandable
command \UseStructureName takes one argument and
allows to use name in a \tagstructbegin command.
\AssignStructureRole allows to assign the symbolic
structure name a role.

In the coming months the various tag names in the
tagging code will be replaced by such symbolic names.
Once the process is finished, document and class authors
will have a flexible tool to set up the tag names of their
documents.

Normalizing key names for block environments

The display block environments, such as itemize,
center, verbatim, etc. have all been reimplemented
to become tagging aware a while back. That was also
the first time we used the template/instance mechanism
to offer consistent layout configuration possibilities
(heading commands will be next to use that approach).
Doing this meant experimenting with different setups to
see what works best. However, as a side effect of these
trials and rewrites we ended up with a rather inconsistent
set of key names across the different templates, so after
the dust had settled it was about time to take a look
at the complete set and standardize the key names as
much as possible. This task has been largely completed,
though some changes are still likely while we develop
more templates covering other areas.

These changes are basically transparent for users who
are just interested in producing tagged and accessible
documents out of the box. However, for people who have
started to customize the layout of the environments,
using for example \EditInstance, the key name changes
need to be reflected, accordingly.

Contexts in typesetting

Sometimes document elements should change their layout
depending on where they are used, for example, lists
might use less vertical space when used inside a footnote

or a float. To allow for such designs in a consistent and
easy way we introduce the concept of “named contexts”:
while typesetting the document ATEX keeps track of

a current “primary context” and a current “secondary
context”. They are changed automatically when certain
commands, such as \footnote or environments, such as
floats, etc. are typeset.

For the primary context, KTEX distinguishes by
default between, typesetting material in the main galley
(context name is (empty)), in a footnote, marginal,
float, caption, header, or footer.

The “secondary context” is by default used to identify
typesetting in different font sizes and therefore knows
knows about tiny, scriptsize, footnotesize, small,
large, Large, LARGE, huge, Huge, and (empty) (denoting
typesetting in \normalsize).

In theory it would be possible for commands and
environments to query the current context and then alter
their behavior, however that would require comparably
complex coding. Instead, the main usage for the
context is with template instances that are used to
define layouts. If a template instance is used via
\UseInstance{{type) H (inst-name)} then this normally
results in calling up an instance of type (type) with the
name (inst-name).3

However, when the “primary context” and/or the
“secondary context” is non-empty then \UseInstance
searches for an instance that is especially tailored to the
current context. This works as follows:

e The string: (primary context): (secondary context)
is appended to (inst-name) and if that instance
exist it is used.*

o If not then (inst-name): (primary context) is tried
next.

o If that doesn’t exist either then (inst-name) is used
as usual.

This means it becomes trivial to alter the behavior of
instances if they appear in a special typesetting context.
For example, if itemize-1 is the instance name for
first-level itemize lists then one can define another
instance named itemize-1:footnote to describe a
special layout used in footnotes. More details on this
can be found in latex-lab-context.pdf or by using
texdoc latex-lab-context on the command line.

At this point in time the mechanism is still rather
experimental, i.e., we provide and use it in latex-lab
to gain experience and we also encourage developers to

3Such instances are defined with a \DeclareInstance or
\DeclareInstanceCopy declaration; see the documentation in the
file 1ttemplates-doc.pdf.

4Note that this means that if the (primary context) is empty we
effectively append :: (secondary context).

experiment with it and provide feedback. Details of the
implementation are likely to change though.

MathML intent attributes
Two new commands, \MathMLintent and \MathMLarg
are added. They are defined in the format as no-op
so they may be added to command definitions in
packages. If luamml is enabled to generate MathML,
these commands allow intent and arg attributes to be
specified.

A definition such as

\newcommand\abs [1]{%
\MathMLintent{absolute-value($x)}

{{\lvert\MathMLarg{x}{#1}\rvert}}/
}

would cause \abs{y} to generate

<mrow intent="absolute-value($x)">
<mo> | </mo><mi arg="x">y</mi><mo>|</mo>
</mrow>

which will allow Assistive Technology (AT) to correctly
read the ambiguous notation |y| as “the absolute value
of y” or some similar reading depending on the chosen
language.

Correctly handle tagging of math in tabular cells
Mathematical content in tabular cells was not correctly
tagged when a MathML representation was automati-
cally generated by LuaTgX. Also tabular preambles of
the form >{$}c<{$} or >{\ (Fc<{\)} failed. This has
been corrected. (tagging-project issues 973 983)

New or improved commands

Support separate font families for script fonts
In TEX’s math processing separate fonts can be selected
for text, script and scriptscript sizes. KTEX’s NFSS
traditionally uses the same font family at different sizes,
handling adjustment needed for making fonts appear
better in a script location through the use of optical
sizes. This works great for traditional TEX fonts, but
for OpenType fonts this leads to issues. OpenType
MATH assumes the font in a script location has separate
features set and therefore received specific adjustments.
To support this without relying on heuris-
tics based on the font size, a new command
\DeclareMathScriptfontMapping has been added.
It takes 3 pairs of encoding/family arguments to indicate
that for the first pair when used as the math main font
the second and the third should be used as the script
and scriptscript font, respectively. (github issue 1707)

Programming support for IATEX's font metafamilies
ETEX knows three main document font families:
\rmfamily for the document’s serifed font family,
\sffamily for its sans serif font family, and \ttfamily

for its monospaced font family. In addition, other font
families can be used by the user or in a document
class or package by explicitly loading them through
\fontfamily{(name)}\selectfont.

In some cases it is helpful to know which of the
three metafamilies (if any) is currently used for
typesetting, and this information is now made available
for programmers in \@currentmetafamily. It returns
either rm, sf, tt, or ?? (in case none of the metafamilies
is currently used).

As a small application of this, the ITEX kernel now
also contains \@restoremetafamily. If the current
metafamily is (name) it executes \(name)family,
e.g., \sffamily, and that then executes the hook
(name)family besides other re-initializations. This
can be useful if that hook contains conditional code
and the condition has changed and therefore requires
re-initialization.

Recovering the argument specifier for document commands
In BTEX News 38 [4] we explained that we had
removed \GetDocumentCommandArgSpec since we felt
that it was only required for debugging. However,
there are some specialist use cases where access to
the argument specification is useful: see, for example,
https://github.com/latex3/latex3/pull/1799. We
have therefore looked again at this area and added

a code interface \cmd_arg_spec:N for accessing the
argument specification. The use of a code-level rather
than design-level name here reflects the fact that this
is an very specialized use case, mainly of interest to
package authors.

Code improvements

Ensure that commands without arguments are not \long
In its original implementation \newcommand or
\renewcommand always defined commands using
\long\def even if the commands had no arguments,
i.e., in situations where the concept of \long made no
sense whatsoever.

The issue with that behavior is that commands
differing only in their \long status are nevertheless
considered different when compared with \ifx even
if there are no arguments to which the \long would
apply. Thus, after \renewcommand\rmdefault{lmr}
and \def\test{lmr} the test \ifx\test\rmdefault
would be false, but it would be true if \rmdefault had
been defined using \def (as many class files do). This
made comparing commands without argument rather
difficult. We have therefore changed \newcommand and
friends so that commands without arguments are always
defined without using the unnecessary \long prefix.

Going forward, this will simplify package and kernel
code as the code can reliably assume that such macros

https://github.com/latex3/tagging-project/issues/973
https://github.com/latex3/latex2e/issues/1707
https://github.com/latex3/latex3/pull/1799

are not \long regardless of whether they are defined by
\renewcommand or \def.

There is a small chance that this is a breaking change
for some package code (though we don’t know of any
case), i.e., if the code was deliberately checking against
\long\def only—in that case the test now needs to be
made against the definition without \long (or against
both, which is what the NFSS implementation of the
kernel did in the past). (github issue 571)

Avoid strange warnings about font substitutions

A font series value such as sbc contains both the
weight (sb, i.e. “semibold”) and the width (c, i.e.
“condensed”) of the font. If you want to reset only
one of the two to “medium” and keep the other, you
can use \fontseries{m?} or \fontseries{?m}: The
former switches sbc to c, the latter switches sbc to sb.
However, if the resulting series does not exist, you got
strange warnings in the past, e.g.:

LaTeX Font Warning:

Font shape ‘0T1/cmss/c/n’ undefined

using ‘OT1/cmss/m?/n’ instead on input line 7.
LaTeX Font Warning:

Font shape ‘OT1/cmss/m?/n’ undefined

using ‘OT1/cmss/m/n’ instead on input line 7.

This has now been corrected so that you get a single,
more meaningful warning:

LaTeX Font Warning:
Font shape ‘0T1/cmss/c/n’ undefined
using ‘O0T1/cmss/m/n’ instead on input line 7.

If the m series does not exist either, you will still get
strange warnings, but this should only affect very few
fonts. The source file was also tidied up a little on this
occasion. (github issue 1727)

Improved handling of infinite shrinkage errors

In the June 2024 release [5] we described the improved
mark mechanism and the problems we had when working
around TEX’s “infinite shrinkage error”. By now the
engines got a new primitive \ignoreprimitiveerror
which can be used to turn this error into a warning,
when, for example, you do only a trial splitting of a box.
This noticeably improves the output in the .log file
from

! Infinite glue shrinkage found in box being split.
<argument> Infinite shrink error above ignored !

1. ... }

The box you are \vsplitting contains some
infinitely shrinkable glue, e.g., ‘\vss’ or

‘\vskip Opt minus 1fil’. Such glue doesn’t belong
there; but you can safely proceed, since the
offensive shrinkability has been made finite.

to a simple

ignored error: Infinite glue shrinkage found in

box being split

As an important side effect, the return code from the
TEX run stays at 0 (unless there are real errors); so in
workflows that want to test whether a TEX run ended
without errors, you don’t get a bogus result because
there is no longer an ignored error. (github issue 1750)

Allow multiple family names in \ProcessKeyOptions
The ability to process key—value options was introduced
into the kernel in the June 2022 release [3], with the
command \ProcessKeyOptions carrying out the option
assignment. In the original version, this takes an optional
argument which can select one key family (namespace)
for options. We have now extended this to take a comma
list of possible families. (github issue 1756)

Control of value expansion in keys

Normally, key—value input is treated “as is”, with no
expansion of either key names or values. However, there
are occasions when the expansion of selected values

is useful. We have now extended the key handling
for templates (\DeclareInstance, etc.) and for keys
created using the L3 programming layer to allow
selective expansion. In both cases, the syntax uses a
trailing colon and a single letter specifier: these letters
are those used in \ExpandArgs or the L3 programming
layer. For example, to use the values of the BTEX 2¢
variable \@itemdepth, one could have settings

key-a:c
key-b:v

Q@itemdepth ,
Q@itemdepth

This facility will automatically be available in any
package setup macro using the L3 programming layer,
for example siunitx. (github issue 1801)

Support word exclusion in case changing

Work on improving automatic case changing over
previous releases has continued. We have now added
the ability to ‘register’ words for exclusion from case
changing, using \DeclareLowercaseExclusions,
\DeclareTitlecaseExclusions and
\DeclareUppercaseExclusions.

Automatic insertion of \par tokens
Since 2022 the major TEX engines have a parameter,
\partokencontext, that controls whether a \par token
is added when TEX is in horizontal mode at the end
of \vbox and in similar contexts. This gives more
control than the classical behavior where the internal
end paragraph routine is invoked with no explicit token
being added.

This allows the paragraph hooks to detect the end
of paragraph even in contexts such as at the end of
a \vbox, where traditionally package code has had to
be modified to add an explicit \par. This is expected

https://github.com/latex3/latex2e/issues/571
https://github.com/latex3/latex2e/issues/1727
https://github.com/latex3/latex2e/issues/1750
https://github.com/latex3/latex2e/issues/1756
https://github.com/latex3/latex2e/issues/1801

to improve compatibility of existing packages with the
tagging code.

ETEX now sets this parameter to 2 by default to
enable automatic insertion of \par. (github issue 1864)

Improved access to Generic Hooks

The code to add generic hooks such as
\AddToHook{cmd/somecmd/before}{. ..} has been
improved so that it is more likely to succeed in cases
where the command has been defined using ezpl?
syntax. Previously attempts to add hooks to commands
would fail if the original definition had used ~ in an
\ExplSyntaxOn context. (github issue 1099)

Bug fixes

Support active characters correctly with
\DeclareRobustCommand

The mechanism used by \DeclareRobustCommand
creates an internal command which has a space added to
the name of the document one: so \foo, for a command
\foo. That fails if applied to an active character:
unlike normal commands, these have to be exactly one
character long. Due to the way the implementation
works, to date this would result in redefining \., every
time \DeclareRobustCommand was used with an active
character. This has now been corrected: robust active
characters are now created using the engine \protected
mechanism and do not use an internal auxiliary. They
still work in file names and labels to give the character
itself. (github issue 345)

Avoid a “Corrupted NFSS tables” error
When a character with an accent is typeset, say “&”
or “é”, it might be the case that it doesn’t exist in
the font but has to be constructed from the base
character and a standalone accent. If that accent is
also not available in the font then KTEX attempts to
find it in a different font, typically one in a different
encoding, e.g., 0T1. Unfortunately, when that involved
font substitutions it resulted in a loop generating the
mentioned error. This has now been corrected by adding
necessary \DeclareFontSubstitution statements.
(github issue 1709)

Changes to packages in the tools category

Updating the status of some components

The tools bundle contains a range of packages with
different usage profiles. Some of these were necessary in
the transition from KTEX 2.09 to IXTEX 2¢, while others
are very widely used in current documents (for example
array). We have therefore marked a small number of
packages in tools as retained only for historical and
stability reasons, and where relevant pointed to more
up-to-date alternatives; the list is:

e enumerate: use enumitem instead

e rawfonts: retained as part of KTEX 2.09 support
e somedefs: retained as part of I TEX 2.09 support
e theorem: use amsthm instead

e verbatim: use fancyvrb instead

Update to handling page marks in longtable

The longtable package has been updated to correctly
adjust the new ITEX mark structures as each page is
output. (github issue 1814)

References

[1] Leslie Lamport. BTEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with
corrections in 1996.

[2] BTEX Project Team. BTEX 2c News 1-42.
November 2025. https://latex-project.org/
news/latex2e-news/ltnews.pdf

[3] BXTEX Project Team. BTEX 2 News 85. June 2022.
https://latex-project.org/news/
latex2e-news/ltnews35.pdf

[4] BTEX Project Team. ETEX 22 News 38. November
2023. https://latex-project.org/news/
latex2e-news/ltnews38.pdf

[6] BXTEX Project Team. BTEX 2 News 39. June 2024.
https://latex-project.org/news/
latex2e-news/ltnews39.pdf

[6] XTEX Project Team. BTpX 2 News 41. June 2025.
https://latex-project.org/news/
latex2e-news/ltnews4l.pdf

[7] BTEX Project Team. Tagging Status of BTEX
Packages and Classes. November 2025.
https://latex3.github.io/tagging-project/
tagging-status

[8] BXTEX Project Team. The BTgX Tagged PDF

repository. November 2025. https:
//github.com/latex3/tagging-project/issues

https://github.com/latex3/latex2e/issues/1864
https://github.com/latex3/latex2e/issues/1099
https://github.com/latex3/latex2e/issues/345
https://github.com/latex3/latex2e/issues/1709
https://github.com/latex3/latex2e/issues/1814
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf
https://latex-project.org/news/latex2e-news/ltnews39.pdf
https://latex-project.org/news/latex2e-news/ltnews39.pdf
https://latex-project.org/news/latex2e-news/ltnews41.pdf
https://latex-project.org/news/latex2e-news/ltnews41.pdf
https://latex3.github.io/tagging-project/tagging-status
https://latex3.github.io/tagging-project/tagging-status
https://github.com/latex3/tagging-project/issues
https://github.com/latex3/tagging-project/issues

	Introduction
	News from the Tagged PDF project
	Expanding the \DocumentMetadata command
	Checking the compatibility with the Tagging support code
	Requiring or testing for the Tagging support code
	Moving paragraph tagging into sockets
	Hooks for \includegraphics keys
	Symbolic structure names
	Normalizing key names for block environments
	Contexts in typesetting
	MathML intent attributes
	Correctly handle tagging of math in tabular cells

	New or improved commands
	Support separate font families for script fonts
	Programming support for font metafamilies
	Recovering the argument specifier for document commands

	Code improvements
	Ensure that commands without arguments are not \long
	Avoid strange warnings about font substitutions
	Improved handling of infinite shrinkage errors
	Allow multiple family names in \ProcessKeyOptions
	Control of value expansion in keys
	Support word exclusion in case changing
	Automatic insertion of \par tokens
	Improved access to Generic Hooks

	Bug fixes
	Support active characters correctly with \DeclareRobustCommand
	Avoid a "Corrupted NFSS tables" error

	Changes to packages in the tools category
	Updating the status of some components
	Update to handling page marks in longtable

