Received: from mx0.gmx.net (mx0.gmx.net [213.165.64.100]) by h1439878.stratoserver.net (8.14.2/8.14.2/Debian-2build1) with SMTP id p188oMIv016065 for ; Tue, 8 Feb 2011 09:50:23 +0100 Received: (qmail 32737 invoked by alias); 8 Feb 2011 08:50:17 -0000 Delivered-To: GMX delivery to rainer.schoepf@gmx.net Received: (qmail invoked by alias); 08 Feb 2011 08:50:16 -0000 Received: from relay.uni-heidelberg.de (EHLO relay.uni-heidelberg.de) [129.206.100.212] by mx0.gmx.net (mx040) with SMTP; 08 Feb 2011 09:50:16 +0100 Received: from listserv.uni-heidelberg.de (listserv.uni-heidelberg.de [129.206.100.94]) by relay.uni-heidelberg.de (8.14.1/8.14.1) with ESMTP id p188kaJo018810 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NO); Tue, 8 Feb 2011 09:46:36 +0100 Received: from listserv.uni-heidelberg.de (localhost.localdomain [127.0.0.1]) by listserv.uni-heidelberg.de (8.13.1/8.13.1) with ESMTP id p188aewV003651; Tue, 8 Feb 2011 09:46:35 +0100 Received: by LISTSERV.UNI-HEIDELBERG.DE (LISTSERV-TCP/IP release 16.0) with spool id 1095766 for LATEX-L@LISTSERV.UNI-HEIDELBERG.DE; Tue, 8 Feb 2011 09:46:35 +0100 Received: from relay.uni-heidelberg.de (relay.uni-heidelberg.de [129.206.100.212]) by listserv.uni-heidelberg.de (8.13.1/8.13.1) with ESMTP id p188kZUn016847 for ; Tue, 8 Feb 2011 09:46:35 +0100 Received: from mailout-de.gmx.net (mailout-de.gmx.net [213.165.64.23]) by relay.uni-heidelberg.de (8.14.1/8.14.1) with SMTP id p188kCJV017759 for ; Tue, 8 Feb 2011 09:46:16 +0100 Received: (qmail invoked by alias); 08 Feb 2011 08:46:12 -0000 Received: from p5B35CB0B.dip.t-dialin.net (EHLO p5b35cb0b.dip.t-dialin.net) [91.53.203.11] by mail.gmx.net (mp061) with SMTP; 08 Feb 2011 09:46:12 +0100 X-Provags-ID: V01U2FsdGVkX1/ixC9lw9fiMOE68gnqBn6ZIOM3zuKi2AM1zrlNmD gIjAc4Ku4iRpj3 User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; de; rv:1.9.2.13) Gecko/20101207 Lightning/1.0b2 Thunderbird/3.1.7 MIME-Version: 1.0 References: <4D5100CC.5040006@GMX.DE> X-Enigmail-Version: 1.1.1 Jabber-ID: schneeschmelze@jabber.ccc.de Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Message-ID: <4D5102CE.1090509@GMX.DE> Date: Tue, 8 Feb 2011 09:46:06 +0100 Reply-To: Mailing list for the LaTeX3 project Sender: Mailing list for the LaTeX3 project From: Juergen Fenn Organization: juergenfenn.de Subject: Re: latexsearch.com: a new resource for mathematical typesetting To: LATEX-L@listserv.uni-heidelberg.de In-Reply-To: <4D5100CC.5040006@GMX.DE> Precedence: list List-Help: , List-Unsubscribe: List-Subscribe: List-Owner: List-Archive: X-GMX-Antispam: 0 (Mail was not recognized as spam); Detail=5D7Q89H36p4WX0t+AtsdW0LQFxFDqzSS/OBnCUciK1u4V6OQaSvkSDMDPEBe6W42g1tWM JaURdGSUxvpBCsVEPPeldhNI5vqmOTn4GfeQObMi3UJ0NE1xa9gmsxaEAbZPhKeM8klwLEzrJiNJ GuFou09ZlctP7/zV1; X-Resent-By: Forwarder X-Resent-For: rainer.schoepf@gmx.net X-Resent-To: rainer@rainer-schoepf.de Status: R X-Status: X-Keywords: X-UID: 6588 Am 08.02.11 09:37 schrieb Juergen Fenn: > But unfortunately I did not get any code snippets from there, I have to correct this: You get the LaTeX source by simply copy and pasting the formulae... it's as simple as that, e.g.: Let {X n d }n≥0be a uniform symmetric random walk on Zd, and Π(d) (a,b)={X n d ∈ Zd : a ≤ n ≤ b}. Suppose f(n) is an integer-valued function on n and increases to infinity as n↑∞, and let $$E_n^{\left( d \right)} = \left\{ {\prod {^{\left( d \right)} } \left( {0,n} \right) \cap \prod {^{\left( d \right)} } \left( {n + f\left( n \right),\infty } \right) \ne \emptyset } \right\}$$ Estimates on the probability of the event $$E_n^{\left( d \right)} $$ are obtained for $$d \geqq 3$$ . As an application, a necessary and sufficient condition to ensure $$P\left( {E_n^{\left( d \right)} ,{\text{i}}{\text{.o}}{\text{.}}} \right) = 0\quad {\text{or}}\quad {\text{1}}$$ is derived for $$d \geqq 3$$ . These extend some results obtained by Erdős and Taylor about the self-intersections of the simple random walk on Zd. Regards, Jürgen.